

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

 21st Century Mobile www.21st.se
……
Page 1 of 24 Marketing & Sales Research & Development
 +46 (0)8 21 21 55

sales@21st.se
+46 (0)8 21 21 55
tech@21st.se

myMSP API Appendix
Device Push Notifications
System Interface – Specifications

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 2 of 24

1 Purpose of Document ... 3

1.1 Author .. 3

1.2 Document Status ... 3

1.2.1 Document changes ... 3

1.3 Document Perimeter ... 3

2 Technical description .. 4

3 Usage scenarios .. 5

3.1 Register app with notification service provider.. 5

3.2 Add subscription to myMSP .. 5

3.3 Update notification key .. 7

3.4 Remove subscription from myMSP ... 7

3.5 Remove all subscriptions from myMSP .. 8

3.6 Send notification .. 9

3.7 Get notification content ... 10

4 DPN methods for apps .. 12

4.1 Add subscription (subscribe) ... 12

4.1.1 Input parameters ... 12

4.1.2 Output parameters (positive result) .. 12

4.1.3 Output parameters (negative result) ... 12

4.2 Update notification service key (updatekey) ... 14

4.2.1 Input parameters ... 14

4.2.2 Output parameters (positive result) .. 14

4.2.3 Output parameters (negative result) ... 14

4.3 Remove subscription (unsubscribe) .. 15

4.3.1 Input parameters ... 15

4.3.2 Output parameters (positive result) .. 15

4.3.3 Output parameters (negative result) ... 15

4.4 Remove all subscriptions (unsubscribeall) .. 16

4.4.1 Input parameters ... 16

4.4.2 Output parameters (positive result) .. 16

4.4.3 Output parameters (negative result) ... 16

4.5 Get notification content (get) ... 17

4.5.1 Input parameters ... 17

4.5.2 Output parameters (positive result) .. 17

4.5.3 Output parameters (negative result) ... 17

5 DPN methods for external server ... 19

5.1 Send notification (send) .. 19

5.1.1 Input parameters ... 19

5.1.2 Output parameters (positive result) .. 19

5.1.3 Output parameters (negative result) ... 20

5.2 Get notification events through HTTP push .. 21

5.3 Get notification events through HTTPS retrieve received messages ... 22

5.3.1 Input parameters ... 22

5.3.2 Output parameters (positive result) .. 22

5.3.3 Output parameters (negative result) ... 22

5.4 Get notification events through WebService retrieve received messages 24

5.4.1 Input Parameters (ReceivedMsgRequest) ... 24

5.4.2 Output Parameters (ReceivedMsgResponse) .. 24

5.4.3 Output class MessageReceived ... 24

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 3 of 24

1 Purpose of Document

The purpose of this document is to describe and define the API interface made available by myMSP to
access the Device Push Notification (DPN) functionality.

1.1 Author

21st Century Mobile AB
Mikael Rosvall
mikael.rosvall@21st.se
+46 (0)8 21 21 55

1.2 Document Status

• Published 2012-10-24

1.2.1 Document changes

• B [2015-01-26]

• Replaced C2DM with GCM

• C [2019-03-11]

• Updated graphic profile.

• Added FCM information.

1.3 Document Perimeter

Neither economical questions nor questions regarding agreements/contracts will be dealt with in this
document.

The information given in this document may change without notice and describes only the matters defined in
the general part of this document. Please verify that your company has the most recent version. This
information is intended for the use of customers and partners of 21st Century Mobile. The information or
statements given in this document concerning the suitability, capacity or performance of the mentioned
service cannot be considered binding but shall be defined in the agreement concluded between 21st Century
Mobile and the customer, if applicable. 21st Century Mobile shall not be responsible in any event for errors in
this document or for any damages, incidental or consequential (including monetary losses), that might arise
from the use of this publication or the information in it. This material and the service described in this
document are copyrighted in accordance with the applicable laws.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 4 of 24

2 Technical description

Device push notifications (DPN) make it possible to send lightweight messages through the Internet to apps
running on, primarily, mobile devices such as smart phones and tablet computers. What sets notifications
apart from other forms of mobile communication methods such as SMS and e-mail is that they can be
targeted at an individual app running on a specific device. Notifications can be used to send simple text
messages or to inform the app that there is new data to be fetched from an external server.

Many operating systems support notification technology but each implementation is different, unlike e.g.
SMS which is based on a common protocol. This adds complexity to the development of apps that are
intended run on more than one operating system, and to the development of server applications that service
these apps. myMSP’s notification technology enables developers to send notifications to apps through a
simple and universal API without having to know what operating system the app is running on.

myMSP currently supports notifications for the following operating systems:

• Apple iOS (APNS)

• Google Android (GCM)

• Google Firebase (FCM)
o Firebase can replace both GCM and APNS. GCM is deprecated and will not be supported

after 2019-04-01.

A simplified overview of the subscription- and the notification-process.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 5 of 24

3 Usage scenarios

The following scenarios are intended to give a brief overview of how an app and an external server, that
services the app, can use the myMSP DPN interface.

3.1 Register app with notification service provider

Before an app can received notifications it needs to register with a notification service provider. There are
different providers depending on which device and operating system the app is running on, but the
registration procedures are similar.

1. The app sends a request to the notification service provider containing an ID for the device
and for the app.

2. The notification service provider generates a key that acts as a unique ID for the app running
on the device. The notification provider uses this key to route notifications to the specific app
instance.

3.2 Add subscription to myMSP

In order to receive notifications the app needs to register the key generated by the notification service
provider with myMSP.

1. The app send a “add subscription”-request to myMSP and includes its’ notification key. The
app can include a text message in the request that will be forwarded to the external server.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 6 of 24

2. myMSP returns a response.

a. If myMSP has accepted the request then it creates a new recipient and returns
a reference called recipient ID to the app. The app should store this ID and
include it in all future request sent to myMSP.

myMSP also creates a notification event message informing the external server
that a subscription has been added. The event message includes the recipient
ID, the type of action that the event describes (add/remove a subscription) and
the text message forwarded from the app. myMSP can either send the event
message to a listener that is set up at the external server or wait for the external
server to fetch it using one of myMSP’s APIs.

b. If myMSP has rejected the request (e.g. the key was not included) a specific
error code is returned. A notification event message is not created.

3. The app can add multiple subscriptions as a way to send messages to the external server,
but after it has received a recipient ID from myMSP (in the response to the first subscription
request) the ID must be included in future request. Each subsequent subscription generates
a notification event message for the external server.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 7 of 24

3.3 Update notification key

Notification service providers occasionally force apps to re-register for notifications which results in the
generation of a new notification key. The new key must be sent to myMSP so that it can update the recipient
to ensure that notifications sent to the app are not rejected or lost.

1. To update an existing recipient’s key its’ ID must be included in the request along with the
new notification key. Since the external server only references the recipient ID when sending
notifications myMSP does NOT create a event message informing the external server that
the key has been updated.

2. myMSP returns a response.

a. If myMSP has accepted the request then the recipient ID and a message
parameter are returned. If the recipient was inactive it is reactivated and the
message parameter is set to “reactivated”.

b. If myMSP has rejected the request a specific error code is returned.

3.4 Remove subscription from myMSP

The app can notify the external server that it wants to remove a subscription by sending a “unsubscribe”-
request to myMSP. The recipient is NOT deactivated as a result of this request.

1. The app send a “unsubscription”-request to myMSP and includes its’ recipient ID. The app
can include a text message in the request that will be forwarded to the external server.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 8 of 24

2. myMSP returns a response.

a. If myMSP has accepted the request then the recipient ID is returned to the app.

myMSP creates a notification event message informing the external server that
a subscription has been removed.

b. If myMSP has rejected the request a specific error code is returned. A
notification event message is not created.

3.5 Remove all subscriptions from myMSP

The app can notify the external server that it wants to remove all of its’ subscriptions by sending a
“unsubscribe all”-request to myMSP. The recipient is deactivated as a result of this request.

1. The app send a “unsubscribe all”-request to myMSP and includes its’ recipient ID. The app
can include a text message in the request that will be forwarded to the external server.

2. myMSP returns a response.

a. If myMSP has accepted the request then the recipient ID is returned to the app.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 9 of 24

myMSP creates a notification event message informing the external server that
all subscriptions for a recipient have been removed.

b. If myMSP has rejected the request a specific error code is returned. A
notification event message is not created.

3.6 Send notification

When apps register subscriptions with myMSP notification event messages are created and sent to/fetched
by the external server. The recipient ID of an app is included in each event message. When the external
server wants to send notifications to apps that have subscribed it only need to include the recipient IDs
associated with the subscriptions and does not need to keep track of which operating system and notification
service the apps are using.

1. The external server sends a notification to myMSP and includes a list of recipients and a
message.

2. myMSP returns a response.

a. If the request has been accepted then the message number that myMSP has
assigned the notification is returned.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 10 of 24

myMSP send the notification to each recipient through their respective
notification services. The keys that the apps sent to myMSP (see 3.2) are
included in the requests to the notification services.

The notification services route the notifications to the correct app using the key
included in the request from myMSP. The notification appears in the device that
is running the app. If the device is not connected to the Internet the notification
service queues the notification for later delivery.

b. If myMSP has rejected the request a specific error code is returned to the
external server.

3.7 Get notification content

Since the maximum size of a notification varies for each notification service myMSP might truncate the text
when the notification is sent. Therefore the app must fetch the content from myMSP after it has received a
notification.

1. The app receives one or more notifications and sends a request to myMSP in order to get
the contents. The app should include the message number of the last notification that was
fetched so that only new notifications are returned.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 11 of 24

2. myMSP returns a response.

a. If myMSP has accepted the request then all new notifications are returned.

b. If myMSP has rejected the request a specific error code is returned.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 12 of 24

4 DPN methods for apps

This chapter describes the various methods of the DPN HTTP interface that should be used by apps to
communicate subscription and registration changes to myMSP.

4.1 Add subscription (subscribe)

Adds a new notification subscription and a new recipient, or adds a new notification subscription for an
already existing recipient. Also creates an inbound DPN message that notifies the external server that a new
subscription has been added.

Connection: https://mymsp.21st.se/external/notifications/subscribe

4.1.1 Input parameters

user User account

message [Optional] A plain text message that can be used to forward information from the app to
the external server. The max length is 4000 bytes.

recipientid [Optional] If the app has not registered a subscription before this parameter should be
left empty. If the app has previously registered a subscription and received a recipient ID

from myMSP then ID should be included in the new subscription request.

spid The name of the notification service the app is registered to.

Valid values are:
apns: for an app running on an iOS device.

gcm: for an app running on an Android device.
fcm: for an app running on either an Android or iOS device.

key The key/ID that the notification service assigns to the app instance. It is returned when

the app is registered with the notification service.

Each notification service uses a different name for their key values, which are:

Token: for an app using APNS, i.e. running on an iOS device.
Registration ID: for an app using FCM/GCM, i.e. running on an Android device.

4.1.2 Output parameters (positive result)

A Character ‘A’

recipientid Recipient identification number, i.e. the ID that myMSP uses to identify the app instance.

4.1.3 Output parameters (negative result)

N Character ‘N’

errNo The error codes:

 7:
13:

22:

Authorization missing
Unknown error

No value in parameter ‘user’

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 13 of 24

23:

412:
46:

60:

61:
63:

Parameter ‘user’ missing

Invalid ‘recipientid’ value
Cannot find a recipient with the supplied recipient ID

Invalid ‘spid’ value

Invalid ‘key’ value
The length of the ‘message’ value is exceeding the allowed amount of bytes (max

4000)

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 14 of 24

4.2 Update notification service key (updatekey)

When a notification service updates the key it is using to identify an app, the app must send the new key
along with its’ recipient ID to myMSP. If the recipient is inactive this request reactivates it.

Connection: https://mymsp.21st.se/external/notifications/updatekey

4.2.1 Input parameters

user User account

recipientid The recipient ID that myMSP included in the response to the initial subscription request

from the app.

spid The name of the notification service the app is registered to. The value replaces the

recipient’s old spid. See 4.1.1 for valid values.

key The new key/ID that the notification service has assigned the app. It replaces the

recipient’s old key. See 4.1.1 for more information regarding keys/IDs.

4.2.2 Output parameters (positive result)

A Character ‘A’

recipientid Recipient identification number, i.e. the ID that myMSP uses to identify the app instance.

message The text ‘reactivated’ if the recipient was reactivated by the update-request.

4.2.3 Output parameters (negative result)

N Character ‘N’

errNo The error codes:

 7:
13:

22:
23:

412:
46:

60:

61:

Authorization missing
Unknown error

No value in parameter ‘user’
Parameter ‘user’ missing

Invalid ‘recipientid’ value
Cannot find a recipient with the supplied recipient ID

Invalid ‘spid’ value

Invalid ‘key’ value

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 15 of 24

4.3 Remove subscription (unsubscribe)

Removes a notification subscription by creating an inbound DPN message that notifies the external server
that the app has removed one of its’ subscriptions. Unsubscription information can be passed to the external
server through the “message” parameter. The recipient is not deactivated as a result of this request. If the
recipient is already inactive no unsubscription message is created.

Connection: https://mymsp.21st.se/external/notifications/unsubscribe

4.3.1 Input parameters

user User account

message [Optional] A plain text message that can be used to forward information from the app to
the external server. The max length is 4000 bytes.

recipientid The recipient ID that myMSP included in the response to the initial subscription request
from the app.

spid The name of notification service the app is registered to. See 4.1.1 for valid values.

4.3.2 Output parameters (positive result)

A Character ‘A’

recipientid Recipient identification number, i.e. the ID that myMSP uses to identify the app instance.

4.3.3 Output parameters (negative result)

N Character ‘N’

errNo The error codes:

 7:

13:
22:

23:
412:

46:

60:

Authorization missing

Unknown error
No value in parameter ‘user’

Parameter ‘user’ missing
Invalid ‘recipientid’ value

Cannot find a recipient with the supplied recipient ID

Invalid ‘spid’ value

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 16 of 24

4.4 Remove all subscriptions (unsubscribeall)

Removes all notification subscription for a recipient by creating an inbound DPN message that notifies the
external server that the app has removed all of its’ subscriptions. Unsubscription information can be passed
to the external server through the “message” parameter. The recipient is deactivated as a result of this
request. If the recipient is already inactive no unsubscription message is created.

Connection: https://mymsp.21st.se/external/notifications/unsubscribeall

4.4.1 Input parameters

user User account

message [Optional] A plain text message that can be used to forward information from the app to
the external server. The max length is 4000 bytes.

recipientid The recipient ID that myMSP included in the response to the initial subscription request
from the app.

spid The name of notification service the app is registered to. See 4.1.1 for valid values.

4.4.2 Output parameters (positive result)

A Character ‘A’

recipientid Recipient identification number, i.e. the ID that myMSP uses to identify the app instance.

4.4.3 Output parameters (negative result)

N Character ‘N’

errNo The error codes:

 7:

13:
22:

23:
412:

46:

60:

Authorization missing

Unknown error
No value in parameter ‘user’

Parameter ‘user’ missing
Invalid ‘recipientid’ value

Cannot find a recipient with the supplied recipient ID

Invalid ‘spid’ value

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 17 of 24

4.5 Get notification content (get)

Since the maximum size of a notification varies for each notification service myMSP might truncate the text
when the notification is sent. Therefore the app should always send a “get”-request after it has received a
notification in order to fetch the entire content from myMSP. See 5.1 of more information regarding sending
notifications.

Connection: https://mymsp.21st.se/external/notifications/get

4.5.1 Input parameters

user User account

recipientid Recipient identification number, i.e. the ID that myMSP uses to identify the app instance.

lastmsgno Message number in myMSP used to identify notifications. The app should store the

message number with the highest value after getting the content of sent notifications and
include it in the next request so that the same notifications are not returned again. A

value of “0” fetches all notifications.

sentafter [Optional] A time stamp, format: yyyyMMddHHmmssSSS. Messages sent before this time
will not be returned. This parameter can be used to prevent the app from fetching

outdated notifications that have accumulated if the app has not been active for a long
time.

4.5.2 Output parameters (positive result)

A Character ‘A’

notifications A list of the contents of notifications sent to the app.

Each notification is displayed on a separate line. The notification parameters are separated

by a tab-character ().

The fields are:

Message number (msgno)
Sent time (format: yyyyMMddHHmmssSSS)
Content

Example:

12556 20120101151617000 A notification message
12557 20120101161718000 Another notification message

4.5.3 Output parameters (negative result)

N Character ‘N’

errNo The error codes:

 7:
13:

22:

23:
391:

Authorization missing
Unknown error

No value in parameter ‘user’

Parameter ‘user’ missing
Invalid ‘msgno’ value

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 18 of 24

392:

412:
46:

66:

Parameter ‘msgno’ missing

Invalid ‘recipientid’ value
Cannot find a recipient with the supplied recipient ID

Invalid ‘sentafter’ value

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 19 of 24

5 DPN methods for external server

This chapter describes the various methods of the DPN interface that external servers can use to send
notifications and receive subscription updates from myMSP.

5.1 Send notification (send)

Send a notification to one or more recipients. When the app receives the notification it must send a “get”-
request (see 4.5) to myMSP in order to fetch the entire content of the message.

Connection: https://mymsp.21st.se/external/notifications/send

5.1.1 Input parameters

user User account

pwd Password

message The message in plain text. The max length is 4000 bytes.

recipients Recipient IDs and/or names/short names of a recipient group. Should be in the

form of a comma-separated string, e.g. “2000001, 2000002,recipgroupA”. All
none DPN-recipients are filtered out.

delaywhileidle [Only FCM/GCM, optional] If included, indicates that the message should not be
sent immediately if the device is idle. The FCM/GCM server will wait for the device

to become active, and then only the last message for each collapse_key (see
below) value will be sent. Valid values: “true” or “false”. The default value is

“false”.

collapsekey [Only FCM/GCM, optional] An arbitrary string that is used to collapse a group of

like messages when the device is offline, so that only the last message gets sent

to the client. This is intended to avoid sending too many messages to the phone
when it comes back online. FCM/GCM allows a maximum of 4 different collapse

keys to be used by the FCM/GCM server at any given time. In other words, the
FCM/GCM server can simultaneously store 4 different send-to-sync messages per

device, each with a different collapse key. If you exceed this number FCM/GCM

will only keep 4 collapse keys, with no guarantees about which ones they will be.
The max length is 400 characters.

timetolive [Only FCM/GCM, optional] Specifies how long (in seconds) the message should be
kept on FCM/GCM storage if the device is offline. The default time-to-live is 4

weeks, i.e. 2419200 seconds. This is also the max value.

restrictedpackagename [Only FCM/GCM, optional] Specifies a string containing the package name of your

app. When set, messages are only sent to registration IDs that match the
package name. The max length is 400 characters.

5.1.2 Output parameters (positive result)

A Character ‘A’

msgno Message identification number in myMSP.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 20 of 24

5.1.3 Output parameters (negative result)

N Character ‘N’

errNo The error codes:

 7:
11:

12:

13:
22:

23:
24:

25:

28:
63:

64:
65:

67:
68:

Authorization missing
Maximum number of messages exceeded

Not enough credits left to send message

Unknown error
No value in parameter ‘user’

Parameter ‘user’ missing
No value in parameter ‘pwd’

Parameter ‘pwd’ missing

No valid values in parameter ‘recipients’
Invalid ‘message’ value: cannot be longer then 4000 bytes

Invalid ‘delaywhileidle’ value
Invalid ‘collapsekey’ value

Invalid 'timetolive' value
Invalid 'restrictedpackagename' value

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 21 of 24

5.2 Get notification events through HTTP push

When a subscription is added or updated myMSP creates a message of the event that can be sent to an
external server through myMSP’s push interface. The following are the relevant parameters that are sent as
an HTTP request to a specified URL on the external server when a new event message has been created.
See appendix myMSP_API_v2_Appendix_http_push.pdf for more information regarding the HTTP push
interface.

Notification events can also be retrieved using myMSPs HTTPS- (see 5.3) or WebService-APIs (see 5.4).

messageType 3 (request with other message types can be ignored).

msgNo Message identification number in myMSP.

createTime Time and date when the event message was created in myMSP. Format: yyyy-MM-dd

HH:mm

creatorName Name of the myMSP account.

initialId A code for the action that generated the event message.

Possible values are:

ACTION_SUB
Generated by a “Add subscription”-request (see 4.1) from the app.

ACTION_UNSUB
Generated by a “Remove subscription”-request (see 4.3) from the app.

ACTION_UNSUB_ALL

Generated by a “Remove all subscriptions”-request (see 4.4) from the app or by

myMSP if a “unregister”-request is received from the notification server for a recipient.

originatorText The recipient ID of the app that generated the event.

destination The URL that the request was sent to, e.g. “/external/notifications/subscribe”. Empty if
myMSP generated an ACTION_UNSUB_ALL-event.

subject A message sent by the app to accompany the event. If myMSP generated an
ACTION_UNSUB_ALL-event the message will be “unsub [recipientid]”.

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 22 of 24

5.3 Get notification events through HTTPS retrieve received messages

When a subscription is added or updated myMSP creates a message of the event that can be fetched by an
external server through myMSP’s HTTPS interface. Since no message is sent from myMSP when an event
is created the external server needs to check for updates regularly. See appendix
myMSP_API_v2_Appendix_https.pdf for more information regarding the HTTPS interface.

Notification events can also be pushed to the external server using myMSPs HTTP push-API (see 5.2) or
retrieved using the WebService-API (see 5.4).

5.3.1 Input parameters

user User Account

pwd Password

lastMsgId Message identification number in myMSP. All event messages with a higher message number

(i.e. event messages generated later) are returned. Input 0 to fetch all event messages.

clean Set to “true” to wash all return values, i.e. all new line characters (\r\n, \n, \r) are replaced

with the string "\n" and all tab characters (\t) with a space.

5.3.2 Output parameters (positive result)

A Character ‘A’

STATUS All event messages with a msgno-value higher than the one supplied in the request are listed.

Two semicolon (;;) are placed in front of each message. The different fields of a received

message are separated by a tab-character ().

The fields are:
Message number
Received date (format: YYYY-MM-DD hh:mm)
User name
Device notification action (see the “action”-parameter in 0 for possible values)

Message type (will always return “DPN”)
Originator number (will always return “null”)

Recipient ID
Subject (a message sent by the app to accompany the event. If myMSP generated an

ACTION_UNSUB_ALL-event the message will be “unsub [recipientid]”.)

Message text (same value as “Subject” field)

Example:
;;12556 2012-01-01 15:16 dpnuser ACTION_SUB DPN null 90001 Msg A Msg A

;;12557 2012-01-01 16:17 dpnuser ACTION_SUB DPN null 90002 Msg B Msg B

5.3.3 Output parameters (negative result)

N Character ‘N’

errNo The error code:

 7:

11:

13:
22:

Authorization missing

Maximum number of messages exceeded

Unknown error
No value in parameter ‘user’

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 23 of 24

23:

24:
25:

391:

392:

Parameter ‘user’ missing

No value in parameter ‘pwd’
Parameter ‘pwd’ missing

Invalid ‘msgno’ value

Parameter ‘msgno’ missing

Document name: myMSP_API_v2_Appendix_dpn.pdf
Revision: C

……
Page 24 of 24

5.4 Get notification events through WebService retrieve received messages

When a subscription is added or updated myMSP creates a message of the event that can be fetched by an
external server through myMSP’s WebService interface. Since no message is sent from myMSP when an
update is added the external server needs to check for updates regularly. See appendix
myMSP_API_v2_Appendix_ws.pdf for more information regarding the WebService interface.

Notification updates can also be pushed to the external server using myMSPs HTTP push-API (see 5.2) or
retrieved using the HTTPS-API (see 5.3).

5.4.1 Input Parameters (ReceivedMsgRequest)

Identification A class containing information that identifies the user and the type of client that is

used. See WebService appendix for more information.

lastMsgNo Message identification number in myMSP. All event messages with a higher

message number (i.e. event messages generated later) are returned. Input 0 to

fetch all event messages.

5.4.2 Output Parameters (ReceivedMsgResponse)

resultCode See result codes in main API-document (3.3)!

resultDescription Text describing the results.

messagesReceived An array (MessageReceived []) that contains received messages. See WebService

appendix for more information.

5.4.3 Output class MessageReceived

msgNo Message identification number in myMSP.

createTime Time and date when the event message was created in myMSP.

creatorName Name of the myMSP account.

initialId A code for the action that generated the event message. See the “action”-
parameter in 0 for possible values.

msgType Will always return “DPN”.

originator Will always return null.

originatorText The recipient ID of the app that generated the event.

subject A message sent by the app to accompany the event. If myMSP generated an

ACTION_UNSUB_ALL-event the message will be “unsub [recipientid]”.)

smsText Same value as “subject” field.

