

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

 21st Century Mobile www.21st.se
……
Page 1 of 18 Marketing & Sales Research & Development
 +46 (0)8 21 21 55

sales@21st.se
+46 (0)8 21 21 55
tech@21st.se

myMSP API v2 Appendix Web service
System Interface - Specifications

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 2 of 18

1 Purpose of Document ... 3

1.1 Author .. 3

1.2 Document Status ... 3

1.2.1 Document Changes .. 3

1.3 Document Perimeter ... 3

2 Technical description .. 5

3 Usage scenarios .. 6

3.1 Setup communication .. 6

3.2 Send a message ... 6

3.3 Check the status of a sent message ... 7

3.4 Check the status of several sent messages ... 8

3.5 Receive a message ... 9

4 Web service methods .. 10

4.1 Control Connection (ping) ... 10

4.1.1 Input Parameters (String) ... 10

4.1.2 Output Parameters (String) ... 10

4.2 Retrieve parameters (getParams) ... 10

4.2.1 Input Parameters (BasicRequest)... 10

4.2.2 Input class Identification ... 10

4.2.3 Output Parameters (ParamsResponse) ... 10

4.3 Send Message (sendMsg) .. 11

4.3.1 Input Parameters (SendRequest) ... 11

4.3.2 Additional SMS parameters .. 11

4.3.3 Input class Recipient ... 12

4.3.4 [deprecated] Input class MessageContent ... 12

4.3.5 Output Parameters (SendResponse) ... 12

4.4 Retrieve Result (getSendResult) .. 13

4.4.1 Input Parameters (SendResultRequest) ... 13

4.4.2 Output Parameters (SendResultResponse) ... 13

4.4.3 Output class RecipientResult .. 13

4.5 Retrieve Results (getSendResults) ... 14

4.5.1 Input Parameters (SendResultsRequest) ... 14

4.5.2 Output Parameters (SendResultsResponse) ... 14

4.5.3 Output class MsgSendResultInfo ... 14

4.6 Retrieve Received Messages (getReceivedMessages) ... 14

4.6.1 Input Parameters (ReceivedMsgRequest) ... 14

4.6.2 Output Parameters (ReceivedMsgResponse) .. 15

4.6.3 Output class MessageReceived ... 15

4.7 [deprecated] Retrieve Message Content (getMsgContent) .. 15

4.7.1 Input Parameters (MsgContentRequest) .. 15

4.7.2 Output Parameters (MsgContentResponse) .. 15

5 Examples .. 16

5.1 C# .. 16

5.2 Java ... 17

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 3 of 18

1 Purpose of Document

The purpose of this document is to define the web service interface made available by myMSP to access the
application functionality. Accessing myMSP can be done from the computer systems of external
parties/customers.

1.1 Author

21st Century Mobile
Mikael Rosvall
mikael.rosvall@21st.se
+46 (0)8 21 21 55

1.2 Document Status

• Published 2007-01-08

1.2.1 Document Changes

• B [2007-06-15]:
o Java code example modified.
o Minor changes and improvements

• C [2007-07-17]
o New method added: Retrieve send results

� 3.4: usage scenario
� 4.5: method description

o Added recommended usage patterns to some method descriptions in chapter 4.

• D [2007-08-20]
o Added a note that the maximum length of a sender alias is ten characters.

• E [2007-12-11]
o Updated the headers and footers with new information.
o Added a note that the maximum length of a sender alias is eleven characters.

• F [2008-03-28]
o Updated all URL-references from the old domain (www.mymsp.eu) to the new domain

(mymsp.21st.se).

• G [2012-01-24]
o Added a new section: 4.3.2 Additional SMS parameters.

• H [2012-12-14]
o Removed parameter “Charset” from section 4.3.1.

• I [2019-03-11]
o Updated graphic profile.
o Deprecated MMS methods.

1.3 Document Perimeter

Neither economical questions nor questions regarding agreements/contracts will be dealt with in this
document.

The information given in this document may change without notice and describes only the matters defined in
the general part of this document. Please verify that your company has the most recent version. This
information is intended for the use of customers and partners of 21st Century Mobile. The information or
statements given in this document concerning the suitability, capacity or performance of the mentioned

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 4 of 18

service cannot be considered binding but shall be defined in the agreement concluded between 21st Century
Mobile and the customer, if applicable. 21st Century Mobile shall not be responsible in any event for errors in
this document or for any damages, incidental or consequential (including monetary losses), that might arise
from the use of this publication or the information in it. This material and the service described in this
document are copyrighted in accordance with the applicable laws.

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 5 of 18

2 Technical description

This interface is realized through Web Services. Web Services are software systems that are designed to
support machine-to-machine communication over a network, e.g. the Internet. The information exchange is
carried out using SOAP-formatted XML-envelopes that are sent through the HTTP-protocol. The web service
URL for accessing myMSP is:

• https://mymsp.21st.se/external/ws2/myMSP

WSDL (Web Services Description Language) is used to describe the system interface, i.e. what services are
available and how they are accessed. WSDL is constructed to enable an automatic information and service
exchange between computers. To hide the complexity of invoking the web services a development tool (e.g.
Microsoft Visual Studio, Eclipse, Netbeans) is normally used to automatically generate the required
parameter classes as specified by the WSDL file. It is important to note that the address to the WSDL-file
should only be used to generate the required parameter classes in the development tool. It should not be
used access the web service itself. The WSDL file that describes the myMSP web service can be found at:

• https://mymsp.21st.se/external/ws2/myMSP?wsdl

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 6 of 18

3 Usage scenarios

The following scenarios are intended to give a brief overview of how to use the myMSP web services. In the
next chapter the myMSP Web Services are described in more detail.

3.1 Setup communication

Before a client that utilizes the myMSP web service can send and receive messages the user identification
has to be validated and some configuration information needs to be fetched.

1. In order to initialize communications with myMSP a basic request, including user
identification and type of client, is used to fetch setup parameters:

2. The response includes two sets of parameters: user- (e.g. allowed originator texts and
incoming ids) and client-parameters (e.g. primary address to be used when communicating
with the web service and a backup address that can be used if the primary address is
inaccessible).

After the client has sent a request to myMSP and has received a response with a result code of 0 (indicating
that the web service address, user name, and password are all valid) the actual sending and receiving of
messages can commence.

3.2 Send a message

As previously mentioned in the main API-document (3.1 The send message sequence) sending a message
through myMSP is done in steps.

1. First, a message send request is sent to myMSP. The request contains user identification, a
list of recipients, and the message content.

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 7 of 18

2. After the send request has been sent, a send response is returned containing, among other
things, the status of the message, i.e. how far it has come in the transmission sequence.

3.3 Check the status of a sent message

It can take some time before the message is delivered to all recipients. The status of a message can be
checked while it is being delivered.

1. To check the current status of a message a send result request has to be sent to myMSP. The
request is composed of user identification, and the message number of the message whose
status should be checked.

2. myMSP returns a response containing the status of the message (i.e. how far it has come in
the transmission sequence). The result response also contains information regarding the
send status for each recipient, e.g. if the message has been successfully sent and delivered
to a specific recipient.

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 8 of 18

The process checking the send status of a message can be repeated as many times as is desirable, e.g. to
check and make sure that all recipients have received the message.

3.4 Check the status of several sent messages

Sometimes it is preferable to check the status of several sent messages at once. Use this method to reduce
the number of requests sent to myMSP, e.g. if you regularly send many messages with few recipients per
message.

1. To check the current status of several messages a send results request has to be sent to
myMSP. The request is composed of user identification and a time stamp.

2. myMSP returns a response containing the aggregated send status (e.g. recipient count, sent
count, delivered count) of those messages whose status has changed since the time that
was specified in the request. However, the response does not contain information regarding
the send status of the each recipient of each message. Submit a send result request (see
3.3) in order to check the send status of each recipient of a message.

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 9 of 18

3.5 Receive a message

myMSP can also receive messages from mobile phones.

1. An initial ID is needed in order to send a message to a myMSP account from a mobile phone.
The initial ID is placed in the beginning of the text in the message and should be followed by
a blank space.

2. A received message request is needed in order to get new messages that have been sent to
a myMSP account.

3. A received message response is returned by myMSP containing a set of received messages.

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 10 of 18

4 Web service methods

This chapter describes the various methods of the myMSP Web service in more detail.

4.1 Control Connection (ping)

Checks if there is a connection to the myMSP-server. The input and output parameters are pretty much
dummies.

Recommended usage pattern: ping is useful when developing your application and later when initializing
your application in order to check that you connection to myMSP is working properly.

4.1.1 Input Parameters (String)

Who A text string

4.1.2 Output Parameters (String)

pingReturn A text string with the value “Alive”

4.2 Retrieve parameters (getParams)

The method makes it possible to customize the remote application based on the current user and client type.
The input parameter is a basic request object that contains an instance of the identification class (4.2.2). The
identification class is included in all requests to myMSP, accept for the ping.

Recommended usage pattern: Since parameters rarely change they need only be fetched about once a day
and when initializing your application.

4.2.1 Input Parameters (BasicRequest)

Identification A class containing information that identifies the user and the type of client that is

used (see 4.2.2 Identification).

4.2.2 Input class Identification

Username User Account

Pwd Password

clientType Type of client (use ‘wsClient’)

clientVersion Not applicable

4.2.3 Output Parameters (ParamsResponse)

resultCode See result codes in main API-document (3.3)!

resultDescription Text describing the results.

userParams An array of parameters (Param) for the user.

A parameter contains a key and a value.

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 11 of 18

clientParams An array of parameters (Param) for the client.

A parameter contains a key and a value.

originatorTexts An array of allowed optional sender aliases (se ‘Originator text’ in main API-
document glossary) to be displayed instead of the originating number.

initialIds An array of initial ids. An initial id has to be included when a recipient replies to a
message sent through myMSP. This enables myMSP to direct the incoming message

to the correct user account.

Example of user parameters:

• locale (defines the users country and language ‘sv_SE’, ‘us_EN’)

• charset (the users preferred character encoding, ‘ISO-8859-1, ‘UTF-8’)

Example of client parameters:

• primaryAddress (primary address to web service)

• backupAddress (secondary address to web service)

• homepage (Web address to myMSP home page with production status)

4.3 Send Message (sendMsg)

Send a message to recipients. Recipients are sent in the form of an array of recipient objects (4.3.2).

4.3.1 Input Parameters (SendRequest)

Identification A class containing information that identifies the user and the type of client that is

used (see 4.2.2 Identification).

msgType Type of message (‘SMS’)

originatorText Originator text of the message (see ‘Originator text’ in main API-document
glossary). Note that only pre-registered originator texts acquired through the

‘getParams’ request (userParams in 4.2.3) can be used. The maximum length of an

alias is eleven (11) characters.

Recipients An array of recipients (see 4.3.2 class Recipient below).

smsText Text Message. Maximum of 765 characters for SMS. See also 4.3.2 on how to add
additional SMS parameters to the message using smsText.

subject [deprecated]

Contents [deprecated]

externalRef An external reference for the user of myMSP. Statistics may be available based on

this reference.

requestReadReceipt [deprecated]

4.3.2 Additional SMS parameters

It is possible to set some additional parameters when sending an SMS. This can be done by adding
parameter tags at the beginning of the message text (“smsText” in 4.3.1) and placing the actual parameters
and their values in between: <param>param1=value1¶m2=value2</param>. All parameters and the
start and stop tags are removed from the message text once they have been processed and do not add to
the total number of characters in the message.

timetolive How long the SMS should “live”, i.e. how long the operator should attempt to send

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 12 of 18

the message to a mobile phone before giving up and deleting it. The default value

is 72 hours. A timetolive value consists of a number and one of three time units:

minutes (m), hours (h) and days (d). The max value is 3 days, and the min value is
5 minutes. Time units cannot be mixed, e.g. a value of one and a half hours should

be set in minutes (90m), NOT hours and minutes (1h30m).

deliverytime The date and time that the message should be delivered. Should be formatted as

follows: yyMMddHHmmsszzzz, e.g. 120125183525004+. The last field (zzzz) is the

time zone difference in quarters of an hour from Western European Time (UTC+0)
i.e. GMT. A value of 000+ or 000- equals GMT, 004+ equals Central European Time

(UTC+1), etc.

isflash Set to “true” if the message should be sent as a flash SMS. A flash SMS is displayed

in the recipient’s mobile phone as soon as it is delivered, i.e. does not have to be
opened by the user. It is also deleted immediately after being read, although some

mobile phones allow the user to save the message to their SMS inbox.

Example: to send a flash SMS with the text “This is a test message” that should live for 15 minutes the
“smsText” parameter should be set to: “<param>timetolive=15m&isflash=true</param>This is a test
message”.

4.3.3 Input class Recipient

recipientId The myMSP internal ID of the recipient

recipientName The name of the recipient

mobileNumber The mobile number of the recipient

externalRef An external reference for the recipient in myMSP. If the user of myMSP services
uses another way of identifying a recipient, other from recipientName or

mobileNumber, it can be specified here.

4.3.4 [deprecated] Input class MessageContent

slideNo [deprecated]

duration [deprecated]

contentType [deprecated]

contentCharset [deprecated]

contentBytes [deprecated]

4.3.5 Output Parameters (SendResponse)

resultCode All results other then zero means that there has been an error. See result codes in
main API-document (3.3)!

resultDescription Text describing the results.

msgNo Message identification number in myMSP.

msgStatus Message Status (state) in myMSP.

See message status in main API-document (3.2)!

createTime The time (yyyyMMddHHmmssSSS) the message was created

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 13 of 18

4.4 Retrieve Result (getSendResult)

Check the send result of a message. The individual delivery status for each recipient is included in an array
of recipient result-objects (4.4.3).

Recommended usage pattern: Typically, the send result of a message changes frequently at first (1-2 min)
and later less frequently. It is therefore recommended that the send status of a message be check less
frequently the longer it has been since the message was sent.

4.4.1 Input Parameters (SendResultRequest)

Identification A class containing information that identifies the user and the type of client that is

used (see 4.2.2 Identification).

msgNo Message identification number in myMSP.

4.4.2 Output Parameters (SendResultResponse)

resultCode See result codes in main API-document (3.3)!

resultDescription Text describing the results.

msgStatus See message status in main API-document (3.2)!

sendRequestTime The time (yyyyMMddHHmmssSSS) the message was requested to be sent.

recipientCount The number of recipients of the message.

sentOkCount The number of messages that where successfully sent to the operator.

deliveredOkCount The number of successful deliveries to recipients.

readOkCount [deprecated]

recipientResults A result per recipient represented by an array of the class RecipientResult described

below.

4.4.3 Output class RecipientResult

recipient A class containing the recipient information (see 4.3.2 class Recipient).

operatorResultCode The result code (error code) from the operator. Provided as guidance for an
eventual correction of the message.

operatorResultDescription The result description (error text) from the operator. Provided as guidance for

an eventual correction of the message.

sentOk Indicates if the operator has accepted the message and the recipient.

sentTime The time (yyyyMMddHHmmssSSS) the message was accepted by the
operator.

deliveredOk Indicates if the operator has successfully delivered the message to the

recipient.

deliveredTime The time (yyyy-MM-dd HH:mm) the message was delivered to the recipient

(mobile phone).

readOk [deprecated]

readTime [deprecated]

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 14 of 18

4.5 Retrieve Results (getSendResults)

Check the send result of several messages.

Recommended usage pattern: If your application normally sends many messages with a few recipients each
(e.g. 100 messages a day with one recipient per message) then it is usually better to send a
sendResultsRequest (that fetches a batch of send results) every few minutes instead of sending a
sendResultRequest for each message.

4.5.1 Input Parameters (SendResultsRequest)

Identification A class containing information that identifies the user and the type of client that is

used (see 4.2.2 Identification).

sinceTime A time stamp, format: yyyyMMddHHmmssSSS. All send status changes that have
occurred after this time will be returned.

4.5.2 Output Parameters (SendResultsResponse)

resultCode See result codes in main API-document (3.3)!

resultDescription Text describing the results.

msgSendResultInfos An array of the class MsgSendResultInfo described below.

4.5.3 Output class MsgSendResultInfo

msgNo Message identification number in myMSP.

sendRequestTime The time (yyyyMMddHHmmssSSS) the message was requested to be sent.

recipientCount The number of recipients of the message.

sentOkCount The number of messages that where successfully sent to the operator.

smsCount myMSP splits long SMS (>160 characters) into several SMS which are sent

separately and later reassembled in the recipient’s mobile phone. smsCount
specifies the total number of SMS that are sent. For example: an SMS with a 170

characters long text and two recipients will generate a smsCount of four (2
recipients x 2 text segments). The smsCount for normal SMS (=<160 characters) is

always the same as the recipient count.

deliveredOkCount The number of successful deliveries to recipients.

readOkCount [deprecated]

4.6 Retrieve Received Messages (getReceivedMessages)

The method fetches received messages.

4.6.1 Input Parameters (ReceivedMsgRequest)

Identification A class containing information that identifies the user and the type of client that is
used (see 4.2.2 Identification).

lastMsgNo The message identification number of the message last received, input 0 to retrieve

all.

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 15 of 18

4.6.2 Output Parameters (ReceivedMsgResponse)

resultCode See result codes in main API-document (3.3)!

resultDescription Text describing the results.

messagesReceived An array (MessageReceived []) that contains received messages. The class
“MessageReceived” is described below.

4.6.3 Output class MessageReceived

msgNo Message identification number in myMSP.

createTime Time and date when the message arrived in myMSP.

creatorName Name of the myMSP user that received the message.

initialId The initial Id used to identify the recipient of the incoming message.

msgType Type of message (‘SMS’)

originator The originators mobile number

originatorText Originator text of the message. See glossary above.

smsText The SMS text

subject [deprecated]

4.7 [deprecated] Retrieve Message Content (getMsgContent)

Deprecated method for getting the content of a MMS message.

4.7.1 Input Parameters (MsgContentRequest)

Identification A class containing information that identifies the user and the type of client that is

used (see 4.2.2 Identification).

msgNo Message identification number in myMSP

4.7.2 Output Parameters (MsgContentResponse)

resultCode See result codes in main API-document (3.3)!

resultDescription Text describing the results.

contents [deprecated]

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 16 of 18

5 Examples

The following code examples illustrate how to use the parameter classes in a development environment.
More complete code samples are also available for Visual Studio 2005 and for Java development
environments. The samples are meant to illustrate the how to use the functionality of the Web Service, i.e.
creating requests, sending requests, receiving responses, reading the data in the responses, and displaying
the results. You are free to view, modify, copy and use the code in any way that you like. The code samples
can be downloaded from our file library. Go to https://mymsp.21st.se/app and log in to access the library.

Note that the myMSP support classes that are used in the code examples have been automatically
generated by a development environment using the myMSP WSDL-file (see chapter 2). These classes look
a bit different depending on which development environment is used.

5.1 C#

private void sendSMS()
{

 // The web service connection-object
 eu.mymsp.www.MyMSP2 _webService = new eu.mymsp.www.MyMSP2();

 // Create and fill a identification object
 eu.mymsp.www.Identification id = new eu.mymsp.www.Identification();

 id.username = "johnDoe";
 id.pwd = "xyz123";

 id.clientType = "wsClient";

 id.clientVersion = "";

 // Create a recipient array
 eu.mymsp.www.Recipient[] recipients = new eu.mymsp.www.Recipient[1];

 // Create and fill a recipient object
 eu.mymsp.www.Recipient recipient = new eu.mymsp.www.Recipient();

 recipient.mobileNumber = "46709888888";
 recipient.recipientName = "Jane Doe";

 recipient.externalRef = "";

 // Add the recipient to the recipient array

 recipients[0] = recipient;

 // Create a send request object
 eu.mymsp.www.SendRequest sendRequest = new eu.mymsp.www.SendRequest();

 // Fill the send request
 sendRequest.identification = id;

 sendRequest.recipients = recipients;
 sendRequest.msgType = "SMS";

 sendRequest.smsText = "Hello, this is a test message.";
 sendRequest.requestReadReceipt = true;

 sendRequest.subject = "";

 sendRequest.originatorText = "";
 sendRequest.externalRef = "";

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 17 of 18

 sendRequest.contents = null;

 // Create a sendMsg object that will contain all the data that should
 // be sent to the web service

 eu.mymsp.www.sendMsg sendSms = new eu.mymsp.www.sendMsg();

 // Add the send request to the sendMsg-object
 sendSms.SendRequest_1 = sendRequest;

 // Create a response object that stores the result of the send-attempt
 eu.mymsp.www.sendMsgResponse response = null;

 try

 {

 // Send the message
 response = _webService.sendMsg(sendSms);

 }
 catch

 {
 response = null;

 }

}

5.2 Java

The following sample code was created using NetBeans 5.5 and depends on support classes generated by
the Web Service framework JAX-WS (a NetBeans wizard). The support classes might look different if you
use another development environment (e.g. Eclipse) and/or Web Service framework (e.g. JAX-RPC, Axis) to
generate them. For more information we refer you to the support documents of your development
environment that details how to create a Web Service client.

private void sendSMS() throws Exception {

 // The web service connection-object
 eu.mymsp.www.MyMSPInterface1 webServicePort =

 new eu.mymsp.www.MyMSP2().getMyMSPInterface1Port();

 // Create and fill a identification object

 eu.mymsp.www.Identification id = new eu.mymsp.www.Identification();
 id.setUsername("johnDoe");

 id.setPwd("xyz123");
 id.setClientType("wsClient");

 id.setClientVersion("");

 // Create and fill a recipient object

 eu.mymsp.www.Recipient recipient = new eu.mymsp.www.Recipient();
 recipient.setMobileNumber("46709888888");

 recipient.setRecipientName("Jane Doe");

 recipient.setExternalRef("");

 // Create a send request object
 eu.mymsp.www.SendRequest sendRequest = new eu.mymsp.www.SendRequest();

 // Fill the send request

 sendRequest.setIdentification(id);

Document name: myMSP_API_v2_Appendix_ws.pdf
Revision: I

……
Page 18 of 18

 sendRequest.getRecipients().add(recipient);

 sendRequest.setMsgType("SMS");

 sendRequest.setSmsText("Hello, this is a test message.");
 sendRequest.setRequestReadReceipt(true);

 sendRequest.setSubject("");
 sendRequest.setOriginatorText("");

 sendRequest.setExternalRef("");

 // Create a response object that stores the result of the send-attempt

 eu.mymsp.www.SendResponse response = null;

 try {
 // Send the message

 response = webServicePort.sendMsg(sendRequest);

 } catch (Exception ex) {
 ex.printStackTrace();

 throw ex;
 }

 System.out.println(response.getMsgNo());

 System.out.println(response.getMsgStatus());

 System.out.println(response.getResultCode());
 System.out.println(response.getResultDescription());

 System.out.println(response.getCreateTime());
}

